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INTRODUCTION
Biological Motivation

Human brain is a densely interconnected 
network of approximately 1011 neurons, each 

t d t 104 thconnected to, on average, 104 others. 
Neuron activity is excited or inhibited through 
connections to other neuronsconnections to other neurons. 
The fastest neuron switching times are known to 
be on the order of 10-3 secbe on the order of 10 3 sec.
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The cell itself includesThe cell itself includes 
a nucleus (at the 
center). 
To the right of cell 2, 

the dendrites providethe dendrites provide 
input signals to the cell.

To the right of cell 1, 
the axon sends output 
i l t ll 2 i thsignals to cell 2 via the 

axon terminals. These 
axon terminals merge 
with the dendrites of 

ll 2cell 2. 
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Portion of a network: two interconnected cells.

Signals can be transmitted unchanged or they can be 
altered by synapses. A synapse is able to increase or y y p y p
decrease the strength of the connection from the 
neuron to neuron and cause excitation or inhibition of 
a subsequence neuron. This is where information is 
t dstored.

The information processing abilities of biological neural 
systems must follow from highly parallel processes
operating on representations that are distributed overoperating on representations that are distributed over 
many neurons. One motivation for ANN is to capture this 
kind of highly parallel computation based on distributed 
representationsrepresentations.
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2. NEURAL NETWORK REPRESENTATION

An ANN is composed of processing elements called or 
perceptrons, organized in different ways to form the network’s 
structure.

P i El tProcessing Elements
An ANN consists of perceptrons. Each of the perceptrons 
receives inputs, processes inputs and delivers a single output.

The input can be raw 
input data or the outputinput data or the output 
of other perceptrons. 
The output can be the 
final result (e.g. 1 means ( g
yes, 0 means no) or it 
can be inputs to other 
perceptrons.
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The network
Each ANN is composed of a collection of perceptrons 
grouped in layers. A typical structure is shown in Fig.2.

Note the three layers: 
input intermediateinput, intermediate 
(called the hidden 
layer) and output. 

Several hidden layers 
can be placed between 
the input and output p p
layers.
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Appropriate Problems for Neural Network
ANN learning is well-suited to problems in which the training data 
corresponds to noisy, complex sensor data. It is also applicable 
to problems for which more symbolic representations are used. 
Th b k ti (BP) l ith i th t l dThe backpropagation (BP) algorithm is the most commonly used 
ANN learning technique. It is appropriate for problems with the 
characteristics:

Input is high-dimensional discrete or real-valued  (e.g. raw sensor input)pu s g d e s o a d sc e e o ea a ued (e g a se so pu )
Output is discrete or real valued
Output is a vector of values
Possibly noisy data
Long training times acceptedLong training times accepted
Fast evaluation of the learned function required.
Not important for humans to understand the weights

Examples:p
Speech phoneme recognition 
Image classification 
Financial prediction
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3. PERCEPTRONS
A perceptron takes a vector of real-valued inputs, calculates a 
linear combination of these inputs, then outputs 

a 1 if the result is greater than some thresholda 1 if the result is greater than some threshold  
–1 otherwise. 

Given real-valued inputs x1 through xn, the output o(x1, …, xn) 
computed by the perceptron iscomputed by the perceptron is

o(x1, …, xn) = 1 if w0 + w1x1 + … + wnxn > 0
1 th i-1 otherwise

where wi is a real-valued constant, or weight.
Notice the quantify (-w0) is a threshold that the weighted 

bi ti f i t t i d fcombination of inputs w1x1 + … + wnxn must surpass in order for 
perceptron to output a 1.
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To simplify notation, we imagine an additional constant input x0 = 
1 ll i t it th b i lit1, allowing us to write the above inequality as 

n

∑i=0 wixi >0

Learning a perceptron involves choosing values for the weights 
w0, w1,…, wn.

Figure 3. A perceptron
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Representation Power of Perceptrons
We can view the perceptron as representing a hyperplane decision 
surface in the n-dimensional space of instances (i.e. points). The 
perceptron outputs a 1 for instances lying on one side of the 
hyperplane and outputs a 1 for instances lying on the other sidehyperplane and  outputs a –1 for instances lying on the other  side, 
as in Figure 4. The equation for this decision hyperplane is 

Some sets of positive and 
negative examples cannot g p
be separated by any 
hyperplane. Those that can 
be separated are called 
linearly separated set of 
examples.

Figure 4. Decision surface
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A single perceptron can be used to represent many boolean 
functions.

• AND function :

x1 x2 out put
0 0 - 1
0 1 1

<Trai ni ng exampl es> Decision hyperplane :
w0 + w1 x1 + w2 x2 = 0
-0.8 + 0.5 x1 + 0.5 x2 = 0

0 1 - 1
1 0 - 1
1 1 1

1 2

x2x2

x1 x2 �wixi out put
0 0 - 0. 8 - 1

<Test  Resul t s> - +- +

0 1 - 0. 3 - 1
1 0 - 0. 3 - 1
1 1 0. 2 1

- - x1

-0.8 + 0.5 x1 + 0.5 x2 = 0

- - x1

-0.8 + 0.5 x1 + 0.5 x2 = 0
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OR function

The two-input perceptron can implement the OR function when 
we set the weights: w0 = -0.3, w1 = w2 = 0.5 

x1 x2 o utput

0 0 -1

0 1 1

1 0 1

<Tra in in g examp les> Decision hyperplane :
w0 + w1 x1 + w2 x2 = 0
-0.3 + 0.5 x1 + 0.5 x2 = 0

1 0 1
1 1 1

<Test Results> x2x2
x1 x2 Σwixi output

0 0 -0.3 -1

0 1 0.2 -1

1 0 0.2 -1

Test Results

+ +

2

+ +

2

1 0 0.2 1
1 1 0.7 1

- + x1

-0.3 + 0.5 x1 + 0.5 x2 = 0

- + x1

-0.3 + 0.5 x1 + 0.5 x2 = 0
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XOR function :

It’s impossible to implement the XOR function by a single 
perception.

x1 x2 out put
0 0 - 1

<Trai ni ng exampl es>
x2x2

0 1 1
1 0 1
1 1 - 1

+ -+ -

- + x1
- + x1

A two-layer network of 
perceptrons can represent 
XOR f iXOR function.

Refer to this equation, 
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Perceptron training rule

Although we are interested in learning networks of 
many interconnected units, let us begin by y g y
understanding how to learn the weights for a single 
perceptron. 
Here learning is to determine a weight vector thatHere learning is to determine a weight vector that 
causes the perceptron to produce the correct +1 or 
–1 for each of the given training examples.
Several algorithms are known to solve this learning 
problem. Here we consider two: the perceptron 
rule and the delta rule.rule and the delta rule. 
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One way to learn an acceptable weight vector is to begin 
with random weights, then iteratively apply the perceptron t a do e g ts, t e te at e y app y t e pe cept o
to each training example, modifying the perceptron 
weights whenever it misclassifies an example. This 
process is repeated, iterating through the training examples as 
many as times needed until the perceptron classifies allmany as times needed until the perceptron classifies all 
training examples correctly. 

Weights are modified at each step according to the perceptronWeights are modified at each step according to the perceptron 
training rule, which revises the weight wi associated with input 
xi according to the rule.

wi ← wi + Δwii i i
where Δwi = η(t – o) xi
Here:
t is target output value for the current training exampleg p g p
o is perceptron output
η is small constant (e.g., 0.1) called learning rate
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Perceptron training rule (cont.)Perceptron training rule (cont.)

The role of the learning rate is to moderate the degree 
t hi h i ht h d t h t It i llto which weights are changed at each step. It is usually 
set to some small value (e.g. 0.1) and is sometimes 
made to decrease as the number of weight-tuning 
iterations increasesiterations increases.
We can prove that the algorithm will converge

If training data is linearly separable
and η sufficiently smalland η sufficiently small.

If the data is not linearly separable, convergence is not 
assured.
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Gradient Descent and the Delta Rule

Although the perceptron rule finds a successful weight vector when 
the training examples are linearly separable, it can fail to converge if 
the examples are not linearly separatable. A second training rule, p y p g ,
called the delta rule, is designed to overcome this difficulty.
The key idea of delta rule: to use gradient descent to search the 
space of possible weight vector to find the weights that best fit the 
t i i l Thi l i i t t b it id thtraining examples. This rule is important because it provides the 
basis for the backpropagration algorithm, which can learn networks 
with many interconnected units.
The delta training rule: considering the task of training anThe delta training rule: considering the task of training an 
unthresholded perceptron, that is a linear unit, for which the output o
is given by:

o = w0 + w1x1 +  ···  + wnxn (1)0 1 1 n n ( )
Thus, a linear unit corresponds to the first stage of a perceptron, 
without the threhold.
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In order to derive a weight learning rule for linear unitsIn order to derive a weight learning rule for linear units, 
let specify a measure for the training error of a weight 
vector, relative to the training examples. The Training 
Error can be computed as the following squared error

where D is set of training examples, td is the target

(2)

where D is set of training examples, td is the target 
output for the training example d and od is the output of 
the linear unit for the training example d.

Here we characterize E as a function of weight 
vector because the linear unit output O depends on 
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Hypothesis Space

To understand the gradient descent algorithm, it is 
helpful to visualize the entire space of possible 
weight vectors and their associated E values, asweight vectors and their associated E values, as 
illustrated in Figure 5. 

Here the axes wo,w1 represents possible values for the two 
weights of a simple linear unit. The wo,w1 plane represents g p o, 1 p p
the entire hypothesis space. 
The vertical axis indicates the error E relative to some fixed 
set of training examples. The error surface shown in the 
figure summarizes the desirability of every weight vector infigure summarizes the desirability of every weight vector in 
the hypothesis space.

For linear units, this error surface must be 
parabolic with a single global minimum And weparabolic with a single global minimum. And we 
desire a weight vector with this minimum.
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Figure 5.  The error surface

How can we calculate the direction of steepest descent along the error surface? 
This direction can be found by computing the derivative of E w.r.t. each
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component of the vector w.



Derivation of the Gradient Descent Rule

This vector derivative is called the gradient of E with respect to the 
vector <w0,…,wn>, written ∇E .

(3)

Notice ∇E is itself a vector, whose components are the partial 
derivatives of E with respect to each of the wi. When interpreted as 
a vector in weight space, the gradient specifies the direction that 
produces the steepest increase in E. The negative of this vector 
therefore gives the direction of steepest decrease.

Since the gradient specifies the direction of steepest increase 
of E the training rule for gradient descent isof E, the training rule for gradient descent is

w ←w + Δw
where
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Here η is a positive constant called the learning rate, which 
determines the step size in the gradient descent search Thedetermines the step size in the gradient descent search. The 
negative sign is present because we want to move the weight 
vector in the direction that decreases E. This training rule can 
also be written in its component form

wi ←wi + Δwi
where

(5)

which makes it clear that steepest descent is achieved by 
altering each component wi of weight vector in proportion to 
∂E/∂wi.i

The vector of ∂E/∂wi derivatives that form the gradient  can be 
obtained by differentiating E from Equation (2), as
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(6)

where xid denotes the single input component xi for the training 

(6)

id g p p i g
example d. We now have an equation that gives ∂E/∂wi in terms of the 
linear unit inputs xid, output od and the target value td associated with 
the training example. Substituting Equation (6) into Equation (5) yields 
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the weight update rule for gradient descent.



(7)

The gradient descent algorithm for training linear units is as 
f ll Pi k i iti l d i ht t A l th lifollows: Pick an initial random weight vector. Apply the linear 
unit to all training examples, them compute Δwi for each 
weight according to Equation (7). Update each weight wi by 
adding Δw them repeat the process The algorithm is givenadding Δwi , them repeat the process. The algorithm is given 
in Figure 6.
Because the error surface contains only a single global 
minimum this algorithm will converge to a weight vector withminimum, this algorithm will converge to a weight vector with 
minimum error, regardless of whether the training examples 
are linearly separable, given a sufficiently small η is used. 
If η is too large the gradient descent search runs the risk ofIf η is too large, the gradient descent search runs the risk of 
overstepping the minimum in the error surface rather than 
settling into it. For this reason, one common modification to 
the algorithm is to gradually reduce the value of η as the 
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number of gradient descent steps grows.



Figure 6. Gradient 
Descent algorithm 
for training a linear 

itunit. 
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Stochastic Approximation to Gradient Descent

The key practical difficulties in applying gradient descent 
are:

Converging to a local minimum can sometimes be quite slow (i.e., it g g q ( ,
can require many thousands of steps).
If there are multiple local minima in the error surface, then there is 
no guarantee that the procedure will find the global minimum.

One common variation on gradient descent intended toOne common variation on gradient descent intended to 
alleviate these difficulties is called incremental gradient 
descent (or stochastic gradient descent). The key 
differences between standard gradient descent and d e e ces be ee s a da d g ad e desce a d
stochastic gradient descent are:

In standard gradient descent, the error is summed over all 
examples before upgrading weights, whereas in stochastic gradient 
descent weights are updated upon examining each trainingdescent weights are updated upon examining each training 
example. 
The modified training rule is like the training example we update the 
weight according to

Δ (t ) (10)
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Summing over multiple examples in standard gradient descent 
requires more computation per weight update step. On the other 
hand, because it uses the true gradient, standard gradient descent 
is often used with a larger step size per weight update than 
stochastic gradient descent.

28



Stochastic gradient descent (i.e. incremental mode) 
can sometimes avoid falling into local minima becausecan sometimes avoid falling into local minima because 
it uses the various gradient of E rather than overall 
gradient of E to guide its search.
Both stochastic and standard gradient descentBoth stochastic and standard gradient descent 
methods are commonly used in practice.

Summary
Perceptron training rulePerceptron training rule

Perfectly classifies training data
Converge, provided the training examples are linearly 
separableseparable 

Delta Rule using gradient descent
CConverge asymptotically to minimum error hypothesis
Converge regardless of whether training data are linearly 
separable
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3. MULTILAYER NETWORKS AND THE 
BACKPROPOGATION ALGORITHMBACKPROPOGATION ALGORITHM

Single perceptrons can only express linear decision surfaces. In 
contrast, the kind of multilayer networks learned by the 
backpropagation algorithm are capaple of expressing a rich 
variety of nonlinear decision surfaces.
Thi ti di h t l h ltil t kThis section discusses how to learn such multilayer networks 
using a gradient descent algorithm similar to that discussed in 
the previous section.

A Differentiable Threshold UnitA Differentiable Threshold Unit
What type of unit as the basis for multilayer networks ?
• Perceptron : not differentiable -> can’t use gradient descent

Linear Unit : multi layers of linear units > still produce only linear• Linear Unit : multi-layers of linear units -> still produce only linear 
function

• Sigmoid Unit : smoothed, differentiable threshold function
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Figure 7. The sigmoid threshold unit.

31



Like the perceptron, the sigmoid unit first computes a linear 
combination of its inputs, then applies a threshold to the result. In 
the case of sigmoid unit, however, the threshold output is a 
continuous function of its inputcontinuous function of its input.
The sigmoid function σ(x) is also called the logistic function.
Interesting property:

• Output ranges between 0 and 1, increasing monotonically with its 
input.
We can derive gradient decent rules to traing
• One sigmoid unit
• Multilayer networks of sigmoid units ⇒ Backpropagation
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The Backpropagation (BP)Algorithm
The BP algorithm learns the weights for a multilayer network, 
given a network with a fixed set of units and interconnections. It 
employs a gradient descent to attempt to minimize the squared 

b t th t k t t l d th t t l ferror between the network output values and the target values for 
these outputs.
Because we are considering networks with multiple output units 
rather than single units as before we begin by redefining E torather than single units as before, we begin by redefining E to 
sum the errors over all of the network output units

E( ) ½ ∑ ∑ (t )2 (13)E(w) = ½ ∑ ∑ (tkd – okd)2 (13)
d ∈D  k∈outputs

where outputs is the set of output units in the network, and tkd and 
okd are the target and output values associated with the kth 
output unit and training example d.
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The Backpropagation Algorithm (cont.)

The BP algorithm is presented in Figure 8. The 
algorithm applies to layered feedforward networks 
containing 2 layers of sigmoid units, with units at 
each layer connected to all units from the preceding 
llayer. 
This is an incremental gradient descent version of 
Backpropagation. p p g
The notation is as follows:

xij denotes the input from node i to unit j, and wij denotes 
the corresponding weight.p g g
δn denotes the error term associated with unit n. It plays a 
role analogous to the quantity (t – o) in our earlier 
discussion of the delta training rule.
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. The 
Backpropagation 
algorithm
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In the BP algorithm, step1 propagates the input forward through the 
t k A d th t 2 3 d 4 t th b k dnetwork. And the steps 2, 3 and 4 propagates the errors backward 

through the network.
The main loop of BP repeatedly iterates over the training examples. 
For each training example it applies the ANN to the exampleFor each training example, it applies the ANN to the example, 
calculates the error of the network output for this example, computes 
the gradient with respect to the error on the example, then updates 
all weights in the network. This gradient descent step is iterated until 
ANN performs acceptably well.
A variety of termination conditions can be used to halt 
the procedure.

One may choose to halt after a fixed number of iterations through 
the loop, or 
once the error on the training examples falls below some 
threshold, or 
once the error on a separate validation set of examples meets 
some criteria.
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Adding Momentum
Because BP is a widely used algorithm, many variations have been 
developed. The most common is to alter the weight-update rule in 
Step 4 in the algorithm by making the weight update on the nth 
iteration depend partially on the update that occurred during the (niteration depend partially on the update that occurred during the (n -
1)th iteration, as follows:

Here Δwi,j(n) is the weight update performed during the n-th iteration 
through the main loop of the algorithm. 

- n-th iteration update depend on (n-1)th iteration
- α: constant between 0 and 1 is called the momentum.

Role of momentum term:
- keep the ball rolling through small local minima in the error 

surface.
- Gradually increase the step size of the search in regions where 
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REMARKS ON THE 
BACKPROPAGATION ALGORITHM 

Convergence and Local MinimaConvergence and Local Minima
Gradient descent to some local minimum

Perhaps not global minimum...Perhaps not global minimum...
Heuristics to alleviate the problem of local 
minima

Add momentum
Use stochastic gradient descent rather than true 

gradient descent.
Train multiple nets with different initial weights 

using the same data
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Expressive Capabilities of ANNs

Boolean functions:
Every boolean function can be represented by network with y p y
two layers of units where the number of hidden units 
required grows exponentially.

Continuous functions:Continuous functions:
Every bounded continuous function can be approximated 
with arbitrarily small error, by network with two layers of 
units [Cybenko 1989; Hornik et al. 1989]

Arbitrary functions:
Any function can be approximated to arbitrary accuracy byAny function can be approximated to arbitrary accuracy by 
a network with three layers of units [Cybenko 1988].
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Hidden layer representations

Hidden layer representations
This 8x3x8 network was trained to learn the identity function.This 8x3x8 network was trained to learn the identity function.
8 training examples are used.
After 5000 training iterations, the three hidden unit values encode 
the eight distinct inputs using the encoding shown on the right.g p g g g
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Learning the 8x3x8 network
Most of the interesting weight changes occurred during the first 

2500 iterations.
Figure 10.a  The plot shows the sum of squared errors for each of the 
eight output units as the number of iterations increases. The sum of 

f h t t d th d dsquare errors for each output decreases as the procedure proceeds, 
more quickly for some output units and less quickly for others.
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Figure 10.b Learning the 8 × 3 × 8 network. The plot shows the evolving 
hidd l t ti f th i t t i “010000000” Thhidden layer representation for the input string “010000000”. The 
network passes through a number of different encodings before 
converging to the final encoding.
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Generalization, Overfitting and Stopping 

Criterion

Termination conditionTermination condition
Until the error E falls below some predetermined threshold
This is a poor strategy

Overfitting problem
Backpropagation is susceptible to overfitting the training 
examples at the cost of decreasing generalizationexamples at the cost of decreasing generalization 
accuracy over other unseen examples.
To see the danger of minimizing the error over the training 
d t id h th E i ith th b fdata, consider how the error E varies with the number of 
weight iteration.
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The generalization 
daccuracy measured over 

the training examples first 
decreases, then increases, 
even as the error overeven as the error over 
training examples continues 
to decrease.

Thi b thThis occurs because the 
weights are being tuned to 
fit idiosyncrasies of the 
training examples that aretraining examples that are 
not representative of the 
general distribution of 
examplesexamples.
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Techniques to overcome overfitting problem
Weight decay : Decrease each weight by some 
small factor during each iteration. The motivation for 
this approach is to keep weight values small.this approach is to keep weight values small.
Cross-validation: a set of validation data in addition 
to the training data. The algorithm monitors the error 
w r t this validation data while using the training setw.r.t. this validation data while using the training set 
to drive the gradient descent search.

How many weight-tuning iterations should the algorithm 
perform? It should use the number of iterations thatperform? It should use the number of iterations that 
produces the lowest error over the validation set.
Two copies of the weights are kept: one copy for training 
and a separate copy of the best weights thus far, measured 
b th i th lid ti tby their error over the validation set.
Once the trained weights reach a higher error over the 
validation set than the stored weights, training is terminated 
and the stored weights are returned
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NEURAL NETWORK 
APPLICATION DEVELOPMENT
The development process for an ANN application has eight steps. 

Step 1: (Data collection) The data to be used for the training and 
testing of the network are collected. Important considerations
are that the particular problem is amenable to neural network 
solution and that adequate data exist and can be obtained.
Step 2: (Training and testing data separation) Trainning data 
must be identified, and a plan must be made for testing the 

f f th t k Th il bl d t di id d i tperformance of the network. The available data are divided into 
training and testing data sets. For a moderately sized data set, 
80% of the data are randomly selected for training, 10% for 
testing and 10% secondary testingtesting, and 10% secondary testing.
Step 3: (Network architecture) A network architecture and a 
learning method are selected. Important considerations are the 
exact number of perceptrons and the number of layers.  

46
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Step 4: (Parameter tuning and weight initialization) There 
are parameters for tuning the network to the desiredare parameters for tuning the network to the desired 
learning performance level. Part of this step is 
initialization of the network weights and parameters, 
followed by modification of the parameters as trainingfollowed by modification of the parameters as training 
performance feedback is received. 

Often, the initial values are important in determining the 
effectiveness and length of training.effectiveness and length of training. 

Step 5: (Data transformation) Transforms the application 
data into the type and format required by the ANN. 
Step 6 (Training) Training is cond cted iterati el bStep 6: (Training) Training is conducted iteratively by 
presenting input and desired or known output data to the 
ANN. The ANN computes the outputs and adjusts the 

i ht til th t d t t ithiweights until the computed outputs are within an 
acceptable tolerance of the known outputs for the input 
cases.
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Step 7: (Testing) Once the training has been 
completed, it is necessary to test the network. 

The testing examines the performance of the network using 
the derived weights by measuring the ability of the network tothe derived weights by measuring the ability of the network to 
classify the testing data correctly. 
Black-box testing (comparing test results to historical results) 
is the primary approach for verifying that inputs produce theis the primary approach for verifying that inputs produce the 
appropriate outputs.

Step 8: (Implementation) Now a stable set of weights 
are obtained. 

Now the network can reproduce the desired output given 
inputs like those in the training set. p g
The network is ready to use as a stand-alone system or as 
part of another software system where new input data will be 
presented to it and its output will be a recommended decision.
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BENEFITS AND LIMITATIONS OF 

NEURAL NETWORKS

6.1 Benefits of ANNs
Usefulness for pattern recognition, classification, generalization, 
abstraction and interpretation of imcomplete and noisy inputs.
(e.g. handwriting recognition, image recognition, voice and 

h iti th f i )speech recognition, weather forecasing).
Providing some human characteristics to problem solving that 
are difficult to simulate using the logical, analytical techniques of 
expert systems and standard software technologies (e gexpert systems and standard software technologies. (e.g. 
financial applications).
Ability to solve new kinds of problems. ANNs are particularly 
effective at solving problems whose solutions are difficult if noteffective at solving problems whose solutions are difficult, if not 
impossible, to define. This opened up a new range of decision 
support applications formerly either difficult or impossible to 
computerize.
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Robustness. ANNs tend to be more robust than their 
conventional counterparts. They have the ability to cope with p y y p
imcomplete or fuzzy data. ANNs can be very tolerant of faults if 
properly implemented.
Fast processing speed.  Because they consist of a large number 
of massively interconnected processing units all operating inof massively interconnected processing units, all operating in 
parallel on the same problem, ANNs can potentially operate at 
considerable speed (when implemented on parallel processors).
Flexibility and ease of maintenaince. ANNs are very flexible in 
adapting their behavior to new and changing environments. They 
are also easier to maintain, with some having the ability to learn 
from experience to improve their own performance.

6.2 Limitations of ANNs
ANNs do not produce an explicit model even though new cases can 
be fed into it and new results obtained.
ANNs lack explanation capabilities. Justifications for results is 
difficults to obtain because the connection weights usually do not 
have obvious interpretaions.
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7. SOME ANN APPLICATIONS

ANN application areas:
Tax form processing to identify tax fraud p g y
Enhancing auditing by finding irregularites
Bankruptcy prediction
Customer credit scoringCustomer credit scoring
Loan approvals
Credit card approval and fraud detection
Financial predictionFinancial prediction
Energy forecasting
Computer access security (intrusion detection and classification 
of attacks)of attacks)
Fraud detection in mobile telecommunication networks
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Customer Loan Approval with Neural 
N k P bl SNetworks - Problem Statement

Many stores are now offering their customers the possibility of 
applying for a loan directly at the store so that they can proceedapplying for a loan directly at the store, so that they can proceed 
with the purchase of relatively expensive items without having to 
put up the entire capital all at once. 
Initially this practice of offering consumer loans was found only inInitially this practice of offering consumer loans was found only in 
connection with expensive purchases, such as cars, but it is now 
commonly offered at major department stores for purchases of 
washing machines, televisions, and other consumer goods.  g g
The loan applications are filled out at the store and the consumer 
deals only with the store clerks for the entire process.  The store, 
however, relies on a financial company (often a bank) that 
handles such loans, evaluates the applications, provides the 
funds, and handles the credit recovery process when a client 
defaults on the repayment schedule.
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For this study, there were 1000 records of consumer loan 
applications that were granted by a bank together with theapplications that were granted by a bank, together with the 
indication whether each loan had been always paid on schedule 
or there had been any problem. 

The provided data did not make a more detailed distinction about 
the kind of problem encountered by those “bad” loans, which 
could range from a single payment that arrived late to a completecould range from a single payment that arrived late to a complete 
defaulting on the loan.

ANN Application to Loan ApprovalANN Application to Loan Approval

Each application had 15 variables that included the number of 
members of the household with an income the amount of themembers of the household with an income, the amount of the 
loan requested, whether or not the applicant had a phone in 
his/her house, etc. 
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Table 1: Input and output variables

Input variables Variable values
-----------------------------------------------------------------------------------------------------------------
1 N° of relatives from 1 to total components
2 N° of relatives with job from 0 to total components2 N° of relatives with job from 0 to total components
3 Telephone number 0,1
4 Real estate 0,1
5 Residence seniority from 0 to date of loan requesty
6 Other loans 0, 1, 2
7 Payment method 0,1
8 Job type 0,1,2,3
9 Job seniority from 0 to date of loan request9 Job seniority from 0 to date of loan request
10 Net monthly earnings integer
11 Collateral 0,1,2
12 Loan type 0,1,2,3
13 Amount of loan integer value
14 Amount of installment integer value
15 Duration of loan integer value
-------------------------------------------------------------------------------------------------------------------
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Computed output variable
1 Repayment probability from 0 to 1001 Repayment probability from 0 to 100
Desired output variable
1 Real result of grant loan            0        if paymnent irregular or null

100    if payment on schedule

Some of these variables were numerical (e.g. the number of 
relatives, while other used a digit as a label to indicate a specific 
class (e.g. the values 0,1,2,3 of variable 8 referred to fourclass (e.g. the values 0,1,2,3 of variable 8 referred to four 
different classes of employment). 
For each record a single variable indicated whether the loan 
reached was extinguished without any problem (Z=100) or with 
some problem (Z=0)some problem (Z=0).  
In its a-posteriori analysis, the bank classified loans with Z=0 as 
“bad loans”. In the provided data, only about 6% of the loans 
were classified as “bad”. Thus, any ANN that classifies loans , y
from a similar population ought to make errors in a percentage 
that is substantially lower than 6% to be of any use (otherwise, it 
could have simply classified all loans as good, resulting in an 
error on 6% of the cases).
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Out of 1000 available records, 400 were randomly selected as a 
training set for the configuration of the ANN while the remainingtraining set for the configuration of the ANN, while the remaining 
600 cases were then supplied to the configured ANN so that its 
computed output could be compared with the real value of 
variable Z.
Beside the network topology, there are many parameters that 
must be set. One of the most critical parameters is the number of 
neurons constituting the hidden layer, as too few neurons can 
h ld th f th t i i hil thold up the convergence of the training process, while too many 
neurons may result in a network that can “learn” very accurately 
(straight memorization) those cases that are in the training set, 
but is unable to generalize what has learned to the new cases inbut is unable to generalize what has learned to the new cases in 
the testing set.  
The research team selected a network with 10 hidden nodes as 
the one that provided the most promising performance; the p p g p ;
number of iterations was set to 20,000 to allow a sufficient 
degree of learning, without loss of performance in generalization 
capability.
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The single output of our network turned out to be in the range 
from -30 to +130 whereas the corresponding “real” output wasfrom 30 to +130, whereas the corresponding real  output was 
limited to the values Z=0 or Z=100.  A negative value of the 
output would indicate a very bad loan and thus negative values 
were clamped to zero; similarly, output values above 100 were 
assigned the value of 100.
A 30% tolerance was used on the outputs so that loans would be 
classified as “good” if the ANN computed a value above 70, and 
“b d” i th i t t l th 30 L th t f ll i th“bad” is their output was less then 30.  Loans that fell in the 
intermediate  band [30, 70] were left as “unclassified”. The width 
of this band is probably overly conservative and a smaller one 
would have sufficed at the price of possibly granting marginalwould have sufficed, at the price of possibly granting marginal 
loans, or refusing loans that could have turned out to be good at 
the end.  The rationale for the existence of the “unclassified” 
band is to provide an alarm requesting a more detailed 
examination unforeseen and unpredictable circumstance.  
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This specific ANN was then supplied with the remaining 600
cases of the testing setcases of the testing set.  
This set contained 38 cases that had been classified as bad 
(Z=0), while the remaining 562 cases had been repaid on 
schedule.  
Clearly the ANN separates the given cases into two non-
overlapping bands: the good ones near the top and the bad ones 
near the bottom.  No loan was left unclassified, so in this case 
there would have been no cases requiring additional (human)there would have been no cases requiring additional (human) 
intervention.
The ANN made exactly three mistakes in the classification of the 
test cases:  those were 3 cases that the ANN classified as “good” 
loans whereas in reality they turned out to be “bad” Manual aloans, whereas in reality they turned out to be bad .  Manual, a-
posteriori inspection of the values of their input variables did not 
reveal any obvious symptoms that they were “problem cases”.  
What could have likely happened is that the applicant did not y pp pp
repay the loan as schedule due to some completely unforeseen 
and unpredictable circumstance.  This is also supported by the 
fact that the bank officers themselves approved those three 
loans, thus one must presume that they did not look too risky at
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The ANN, however, was more discriminating than the , , g
bank officers since the ANN would have denied 35 
loan applications that scored less than 30.  
As is turns out, all those 35 loans had problems with , 35 p
their repayments and thus the bank would have been 
well advised to heed the network’s classification and to 
deny those 35 applications.  Had the bank followed 
that advise, 268 million liras would have not been put 
in jeopardy by the bank (out of a total of more than 3 
billion liras of granted loans that were successfully 

id )repaid.)
--------------------------------------------------------

F. D. Nittis, G. Tecchiolli & A. Zorat, Consumer Loan Classification 
Using Artificial Neural Networks, ICSC EIS’98 Conference, Spain 
Feb.,1998

59



Loan classification by ANN

Loan number
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Bankruptcy Prediction with Neural Networks
There have been a lot of work on developing neural networks to 
predict bankruptcy using financial ratios and discriminant 
analysis. The ANN paradigm selected in the design phase for 
this problem was a three layer feedforward ANN usingthis problem was a three-layer feedforward ANN using 
backpropagation. 
The data for training the network consisted of a small set of 
numbers for well-known financial ratios, and data were available ,
on the bankruptcy outcomes corresponding to known data sets. 
Thus, a supervised network was appropriate, and training time 
was not a problem.

Application DesignApplication Design
There are five input nodes, corresponding to five financial ratios:

X1:  Working capital/total assets
X2: Retained earnings/total assetsX2: Retained earnings/total assets
X3: Earnings before interest and taxes/total assets
X4: Market value of equity/total debt
X5: Sales/total assets
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A single output node gives the final classification showingA single output node gives the final classification showing 
whether the input data for a given firm indicated a potential 
bankruptcy (0) or nonbankruptcy (1).
The data source consists of financial ratios for firms that did or 
did not go bankrupt between 1975 and 1982did not go bankrupt between 1975 and 1982. 
Financial ratios were calculated for each of the five aspects 
shown above, each of which became the input for one of the five 
input nodes. p
For each set of data, the actual result, whether or not bankruptcy 
occurred, can be compared to the neural network’s output to 
measure the performance of the network and monitor the training.

ANN Architecture
The architecture of the ANN is shown in the following figure  
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Training
The data set, consisting of 129 firms, was partitioned into 
a training set and a test set. The training set of 74 firms 
consisted of 38 that went bankrupt and 36 that did notconsisted of 38 that went bankrupt and 36 that did not. 
The needed ratios were computed and stored in the 
input file to the neural network and in a file for a 
conventional discriminant analysis program forconventional discriminant analysis program for 
comparison of the two techniques.
The neural network has three important parameters to 
b t l i th h ld l i t d tbe set: learning threshold, learning rate, and momentum.

The learning threshold allows the developer to vary the 
acceptable overall error for the training case. 
Th l i t d t ll th d l t t lThe learning rate and momentum allow the developer to control 
the step sizes the network uses to adjust the weights as the 
errors between computed and actual outputs are fed back.
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Testing
The neural network was tested in two ways: by using the test data 
set and by comparison with discriminant analysis. The test set 
consisted of 27 bankrupt and 28 non-bankrupt firms. The neural 
network was able to correctly predict 81.5% of the bankrupt cases y p % p
and 82.1% of the nonbankrupt cases. 

Overrall, the ANN did much better predicting 22 out of the 27 actual 
cases (the discriminant analysis predicted only 16 cases correctly). 
An analysis of the errors showed that 5 of the bankrupt firms classifiedAn analysis of the errors showed that 5 of the bankrupt firms classified 
as nonbankrupt were also misclassified by the discriminant analysis 
method. A similar situation occurred for the nonbankrupt cases.

The result of the testing showed that neural network 
implementation is at least as good as the conventionalimplementation is at least as good as the conventional 
approach. An accuracy of about 80% is usually 
acceptable for ANN applications. At this level, a system 
is useful because it automatically identifies problemis useful because it automatically identifies problem 
situations for further analysis by a human expert.

---------------------------------------------------------------------------------------------------------------
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Time Series Prediction

Time series prediction: given an existing data series, we observe 
or model the data series to make accurate forecasts 

Example time series
Financial (e.g., stocks, exchange rates)
Ph i ll b d ( th t i fl )Physically observed (e.g., weather, sunspots, river flow)

Why is it important?
Preventing undesirable events by forecasting the event, 
identifying the circumstances preceding the event and takingidentifying the circumstances preceding the event, and taking 
corrective action so the event can be avoided (e.g., inflationary 
economic period)
Forecasting undesirable yet unavoidable events to preemptivelyForecasting undesirable, yet unavoidable, events to preemptively 
lessen their impact (e.g., solar maximum w/ sunspots)
Profiting from forecasting (e.g., financial markets)
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Why is it difficult?y
Limited quantity of data  (Observed data series sometimes too 

short to partition)
Noise (Erroneous data points, obscuring component)( g )
Moving Average
Nonstationarity (Fundamentals change over time, 

nonstationary)
Forecasting method selection (Statistics, Artificial intelligence)

Neural networks have been widely used as time series 
forecasters: most often these are feed-forward networks which 
employ a sliding window over the input sequence.
The neural network sees the time series X1,…,Xn in the form of 
many mappings of an input vector to an output value.
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A number of adjoining data points of the time series (the input 
window Xt Xt 1 Xt) are mapped to the interval [0 1] andwindow Xt-s, Xt-s-1,…, Xt) are mapped to the interval [0,1] and 
used as activation levels for the input of the input layer. 
The size s of the input window correspondends to the number of 
input units of the neural network. 
In the forward path, these activation levels are propagated over 
one hidden layer to one output unit. The error used for the 
backpropagation learning algorithm is now computed by 
comparing the value of the output unit with the transformed valuecomparing the value of the output unit with the transformed value 
of the time series at time t+1. This error is propagated back to 
the connections between output and hidden layer and to those 
between hidden and output layer. After all weights have been 
updated accordingly one presentation has been completedupdated accordingly, one presentation has been completed. 
Training a neural network with backpropagation learning 
algorithm usually requires that all representations of the input set 
(called one epoch) are presented many times. For examples, the 
ANN 60 t 138 hANN may use 60 to 138 epoches.
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The following parameters of the ANN are chosen for a closer 
inspection:
The number of input units: The number of input units determinesThe number of input units: The number of input units determines 
the number of periods the ANN “looks into the past” when 
predicting the future. The number of input units is equivalent to 
the size of the input window.
The number of hidden units: Whereas it has been shown that 
one hidden layer is sufficient to approximate continuous function, 
the number of hidden units necessary is “not known in general”. 
S l f ANN hit t th t h b d fSome examples of ANN architectures that have been used for 
time series prediction can be 8-8-1, 6-6-1, and 5-5-1.
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The learning rate: (0< < 1) is a scaling factor that tells theThe learning rate: η (0<η< 1) is a scaling factor that tells the 
learning algorithm how strong the weights of the connections 
should be adjusted for a given error. A higher η can be used to 
speed up the learning process, but if η is too high, the algorithmspeed up the learning process, but if η is too high, the algorithm 
will skip the optimum weights. The learning rate ηis constant 
across presentations.
The momentum parameter α (0 < α < 1) is another number that p ( )
affects the gradient descent of the weights: to prevent each 
connection from following every little change in the solution 
space immediately, the momentum term is added that keeps the 
direction of the pre io s step th s a oiding the descent into localdirection of the previous step thus avoiding the descent into local 
minima. The momentum term is constant across presentations.
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